Alternative Careers for Firefighters
Firefighters are first responders who often have a lot of training and experience in their field. This makes them prime candidates for careers in other areas that require similar skills. Here are some options:
Law Enforcement Officer
Law enforcement officers work to enforce laws and keep the community safe. They often need to be physically fit and able to handle stressful situations calmly.
Private Investigator
Private investigators do much of the same work as law enforcement officers, but they are usually employed by private companies rather than public entities. They typically work on cases involving theft or fraud, which can be very rewarding but can also be dangerous because they often go up against criminals who wish to do them harm.
Emergency Medical Technician (EMT)
EMTs respond to medical emergencies such as car accidents and heart attacks, providing first aid until an ambulance arrives or until the patient stabilizes enough so that they can be transported safely to a hospital by paramedics. EMTs must have excellent communication skills as well as knowledge about human anatomy and physiology; they also need physical strength since most incidents require lifting patients onto gurneys or into ambulances.
Alternative Careers For Firefighters
A firefighter is a rescuer extensively trained in firefighting, primarily to extinguish hazardous fires that threaten life, property, and the environment as well as to rescue people and in some cases or jurisdictions also animals from dangerous situations. Male firefighters are sometimes referred to as firemen (and, less commonly, a female firefighter as firewoman).[1][2]
The fire service, also known in some countries as the fire brigade or fire department, is one of the three main emergency services. From urban areas to aboard ships, firefighters have become ubiquitous around the world.
The skills required for safe operations are regularly practised during training evaluations throughout a firefighter’s career. Initial firefighting skills are normally taught through local, regional or state-approved fire academies or training courses.[3] Depending on the requirements of a department, additional skills and certifications such as technical rescue and pre-hospital medicine may also be acquired at this time.
Firefighters work closely with other emergency response agencies such as the police and emergency medical service. A firefighter’s role may overlap with both. Fire investigators or fire marshals investigate the cause of a fire. If the fire was caused by arson or negligence, their work will overlap with law enforcement. Firefighters also frequently provide some degree of emergency medical service, including certifying and working as full-time paramedics from engine, truck, and rescue companies in some systems to initiate advanced life support until ambulance transport arrives.
Contents
1 Duties
1.1 Fire suppression
1.1.1 Structural firefighting
1.1.2 Wildland firefighting
1.2 Rescue
1.3 Emergency medical services
1.4 Specialized roles
1.4.1 Aircraft rescue & firefighting
1.4.2 Hazardous materials
1.5 Fire prevention
2 Occupational health and safety
2.1 Direct risks
2.1.1 Fires
2.1.2 Structural collapses
2.1.3 Traffic collisions
2.1.4 Violence
2.2 During debris cleanup
2.3 Long-term risks
2.3.1 Cardiovascular disease
2.3.2 Cancer
2.3.3 Mental stress
2.3.4 Occupational hearing loss
3 Types of coverage and workload
4 Firefighting around the world
5 Communication and command structure
5.1 Ranks
6 Firefighter equipment
7 History
8 Fundraisers
9 See also
10 References
11 External links
Duties
Fire suppression
Firefighters had to focus their efforts on saving the adjacent church instead of this burning building, an abandoned convent in Massueville, Quebec, Canada
Firefighter carrying out a ladder slide
A fire burns due to the presence of three elements: fuel, oxygen and heat. This is often referred to as the fire triangle. Sometimes it is known as the fire tetrahedron if a fourth element is added: a chemical chain reaction which can help sustain certain types of fire. The aim of firefighting is to deprive the fire of at least one of those elements. Most commonly this is done by dousing the fire with water, though some fires require other methods such as foam or dry agents. Firefighters are equipped with a wide variety of equipment for this purpose that include ladder trucks, pumper trucks, tanker trucks, fire hose, and fire extinguishers.
Structural firefighting
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2021) (Learn how and when to remove this template message)
See also Fire suppression for other techniques.
While sometimes fires can be limited to small areas of a structure, wider collateral damage due to smoke, water and burning embers is common. Utility shutoff (such as gas and electricity) is typically an early priority for arriving fire crews. In addition, forcible entry may be required in order to gain access into the structure. Specific procedures and equipment are needed at a property where hazardous materials are being used or stored.
Structure fires may be attacked with either “interior” or “exterior” resources, or both. Interior crews, using the “two in, two out” rule, may extend fire hose lines inside the building, find the fire and cool it with water. Exterior crews may direct water into windows and other openings, or against any nearby fuels exposed to the initial fire. Hose streams directed into the interior through exterior wall apertures may conflict and jeopardize interior fire attack crews.
Buildings that are made of flammable materials such as wood are different from building materials such as concrete. Generally, a “fire-resistant” building is designed to limit fire to a small area or floor. Other floors can be safe by preventing smoke inhalation and damage. All buildings suspected or on fire must be evacuated, regardless of fire rating.
Some fire fighting tactics may appear to be destructive, but often serve specific needs. For example, during ventilation, firefighters are forced to either open holes in the roof or floors of a structure (called vertical ventilation), or open windows and walls (called horizontal ventilation) to remove smoke and heated gases from the interior of the structure. Such ventilation methods are also used to improve interior visibility to locate victims more quickly. Ventilation helps to preserve the life of trapped or unconscious individuals as it releases the poisonous gases from inside the structure. Vertical ventilation is vital to firefighter safety in the event of a flashover or backdraft scenario. Releasing the flammable gases through the roof eliminates the possibility of a backdraft, and the removal of heat can reduce the possibility of a flashover. Flashovers, due to their intense heat (900–1,200 °F (480–650 °C)) and explosive temperaments, are commonly fatal to firefighter personnel. Precautionary methods, such as smashing a window, reveal backdraft situations before the firefighter enters the structure and is met with the circumstance head-on. Firefighter safety is the number one priority.
Whenever possible during a structure fire, property is moved into the middle of a room and covered with a salvage cover, a heavy cloth-like tarp. Various steps such as retrieving and protecting valuables found during suppression or overhaul, evacuating water, and boarding windows and roofs can divert or prevent post-fire runoff.
Wildland firefighting
Main article: Wildfire suppression
Wildfires (known in Australia as bushfires) require a unique set of strategies and tactics. In many countries such as Australia and the United States, these duties are mostly carried out by local volunteer firefighters. Wildfires have some ecological role in allowing new plants to grow, therefore in some cases they will be left to burn.[4] Priorities in fighting wildfires include preventing the loss of life and property as well as ecological damage.
Rescue
A demonstration of a vehicle extrication.
Firefighters rescue people (and animals) from dangerous situations such as crashed vehicles, structural collapses, trench collapses, cave and tunnel emergencies, water and ice emergencies, elevator emergencies, energized electrical line emergencies, and industrial accidents.[5] In less common circumstances, Firefighters rescue victims from hazardous materials emergencies as well as steep cliffs, embankment and high rises – The latter is referred to as High Angle Rescue, or Rope Rescue. Many fire departments, including most in the United Kingdom, refer to themselves as a fire and rescue service for this reason. Large fire departments, such as the New York City Fire Department and London Fire Brigade, have specialist teams for advanced technical rescue. As building fires have been in decline for many years in developed countries such as the United States, rescues other than fires make up an increasing proportion of their firefighters’ work.[6]
Emergency medical services
Firefighters frequently provide some degree of emergency medical care. In some jurisdictions first aid is the only medical training that firefighters have, and medical-only calls are the sole responsibility of a separate emergency medical services (EMS) agency. Elsewhere, it is common for firefighters to respond to medical-only calls. The impetus for this is the growing demand for emergency medicine and the decline of fires and traditional firefighting call-outs[6]—though fire departments still have to be able to respond to them—and their existing ability to respond rapidly to emergencies. A rapid response is particularly necessary for cardiac arrests, as these will lead to death if not treated within minutes.[7]
The dispatch of firefighters to medical emergencies is particularly common in fire departments that run the EMS, including most large cities of the United States. In those departments, firefighters are often jointly trained as emergency medical technicians in order to deliver basic life support, and more rarely as paramedics to deliver advanced life support. In the United Kingdom, where fire services and EMS are run separately, fire service co-responding has been introduced more recently.[8] Another point of variation is whether the firefighters respond in a fire engine or a response car.[9] Either way, separate employees to crew ambulances are still needed, unless the firefighters can work shifts on the ambulances.
Specialized roles
Aircraft rescue & firefighting
Main article: Aircraft rescue and firefighting
Airports employ specialist firefighters to deal with potential ground emergencies. Due to the mass casualty potential of an aviation emergency, the speed with which emergency response equipment and personnel arrive at the scene of the emergency is of paramount importance. When dealing with an emergency, the airport firefighters are tasked with rapidly securing the aircraft, its crew and its passengers from all hazards, particularly fire. Airport firefighters have advanced training in the application of firefighting foams, dry chemical and clean agents used to extinguish burning aviation fuel.
Hazardous materials
Decontamination after a chemical spill
Fire departments are usually the primary agency that responds to an emergency involving hazardous materials. Specialized firefighters, known as hazardous materials technicians, have training and certification in chemical identification, leak control, decontamination, and clean-up procedures.
Fire prevention
Firefighters frequently give fire prevention talks at schools and community events
Fire departments frequently provide advice to the public on how to prevent fires in the home and work-place environments. Fire inspectors or fire marshals will directly inspect businesses to ensure they are up to the current building fire codes,[10][11] which are enforced so that a building can sufficiently resist fire spread, potential hazards are located, and to ensure that occupants can be safely evacuated, commensurate with the risks involved.
Fire suppression systems have a proven record for controlling and extinguishing unwanted fires. Many fire officials recommend that every building, including residences, have fire sprinkler systems.[12] Correctly working sprinklers in a residence greatly reduce the risk of death from a fire.[13] With the small rooms typical of a residence, one or two sprinklers can cover most rooms. In the United States, the housing industry trade groups have lobbied at the State level to prevent the requirement for Fire Sprinklers in one or two family homes.[14][15]
Other methods of fire prevention are by directing efforts to reduce known hazardous conditions or by preventing dangerous acts before tragedy strikes. This is normally accomplished in many innovative ways such as conducting presentations, distributing safety brochures, providing news articles, writing public safety announcements (PSA) or establishing meaningful displays in well-visited areas. Ensuring that each household has working smoke alarms, is educated in the proper techniques of fire safety, has an evacuation route and rendezvous point is of top priority in public education for most fire prevention teams in almost all fire department localities.
Fire investigators, who are experienced firefighters trained in fire cause determinism, are dispatched to fire scenes, in order to investigate and determine whether the fire was a result of an accident or intentional. Some fire investigators have full law enforcement powers to investigate and arrest suspected arsonists.
Occupational health and safety
Direct risks
Fires
Firemen’s Memorial (Boston) by John Wilson
Firefighters wearing PPE tackle an aircraft fire during a drill at Dyess Air Force Base in Abilene, Texas
To allow protection from the inherent risks of fighting fires, firefighters wear and carry protective and self-rescue equipment at all times. A self-contained breathing apparatus (SCBA) delivers air to the firefighter through a full face mask and is worn to protect against smoke inhalation, toxic fumes, and super heated gases. A special device called a Personal Alert Safety System (PASS) is commonly worn independently or as a part of the SCBA to alert others when a firefighter stops moving for a specified period of time or manually operates the device. The PASS device sounds an alarm that can assist another firefighter (firefighter assist and search team (FAST), or rapid intervention team (RIT), in locating the firefighter in distress.
Firefighters often carry personal self-rescue ropes. The ropes are generally 30 feet (9.1 m) long and can provide a firefighter (that has enough time to deploy the rope) a partially controlled exit out of an elevated window. Lack of a personal rescue rope is cited in the deaths of two New York City Firefighters, Lt. John Bellew and Lt. Curtis Meyran, who died after they jumped from the fourth floor of a burning apartment building in the Bronx. Of the four firefighters who jumped and survived, only one of them had a self-rescue rope. Since the incident, the Fire Department of New York City has issued self-rescue ropes to their firefighters.[16]
Heat injury is a major issue for firefighters as they wear insulated clothing and cannot shed the heat generated from physical exertion. Early detection of heat issues is critical to stop dehydration and heat stress becoming fatal. Early onset of heat stress affects cognitive function which combined with operating in dangerous environment makes heat stress and dehydration a critical issue to monitor. Firefighter physiological status monitoring is showing promise in alerting EMS and commanders to the status of their people on the fire ground. Devices such as PASS device alert 10–20 seconds after a firefighter has stopped moving in a structure. Physiological status monitors measure a firefighter’s vital sign status, fatigue and exertion levels and transmit this information over their voice radio. This technology allows a degree of early warning to physiological stress. These devices[17] are similar to technology developed for Future Force Warrior and give a measure of exertion and fatigue. They also tell the people outside a building when they have stopped moving or fallen. This allows a supervisor to call in additional engines before the crew get exhausted and also gives an early warning to firefighters before they run out of air, as they may not be able to make voice calls over their radio. Current OSHA tables exist for heat injury and the allowable amount of work in a given environment based on temperature, humidity and solar loading.[18]
Firefighters are also at risk for developing rhabdomyolysis. Rhabdomyolysis is the breakdown of muscle tissue and has many causes including heat exposure, high core body temperature, and prolonged, intense exertion. Routine firefighter tasks, such as carrying extra weight of equipment and working in hot environments, can increase firefighters’ risk for rhabdomyolysis.[19][20]
Structural collapses
Another leading cause of death during firefighting is structural collapse of a burning building (e.g. a wall, floor, ceiling, roof, or truss system). Structural collapse, which often occurs without warning, may crush or trap firefighters inside the structure. To avoid loss of life, all on-duty firefighters should maintain two-way communication with the incident commander and be equipped with a personal alert safety system device on all fire scenes and maintain radio communication on all incidents(PASS).[21][22] Francis Brannigan was the founder and greatest contributor to this element of firefighter safety.
Traffic collisions
In the United States, 25% of fatalities of firefighters are caused by traffic collisions while responding to or returning from an incident. Other firefighters have been injured or killed by vehicles at the scene of a fire or emergency (Paulison 2005). A common measure fire departments have taken to prevent this is to require firefighters to wear a bright yellow reflective vest over their turnout coats if they have to work on a public road, to make them more visible to passing drivers.[23] In addition to the direct dangers of firefighting, cardiovascular diseases account for approximately 45% of on duty firefighter deaths.[24]
Violence
Firefighters have sometimes been assaulted by members of the public while responding to calls. These kinds of attacks can cause firefighters to fear for their safety and may cause them to not have full focus on the situation which could result in injury to their selves or the patient.[25]
During debris cleanup
Main article: Occupational hazards of fire debris cleanup
Firefighters at Ground Zero during the September 11 attacks
Once extinguished, fire debris cleanup poses several safety and health risks for workers.[26][27]
Many hazardous substances are commonly found in fire debris. Silica can be found in concrete, roofing tiles, or it may be a naturally occurring element. Occupational exposures to silica dust can cause silicosis, lung cancer, pulmonary tuberculosis, airway diseases, and some additional non-respiratory diseases.[28] Inhalation of asbestos can result in various diseases including asbestosis, lung cancer, and mesothelioma.[29] Sources of metals exposure include burnt or melted electronics, cars, refrigerators, stoves, etc. Fire debris cleanup workers may be exposed to these metals or their combustion products in the air or on their skin. These metals may include beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, and many more.[26] Polyaromatic hydrocarbons (PAHs), some of which are carcinogenic, come from the incomplete combustion of organic materials and are often found as a result of structural and wildland fires.[30]
Safety hazards of fire cleanup include the risk of reignition of smoldering debris, electrocution from downed or exposed electrical lines or in instances where water has come into contact with electrical equipment. Structures that have been burned may be unstable and at risk of sudden collapse.[27][31]
Standard personal protective equipment for fire cleanup include hard hats, goggles or safety glasses, heavy work gloves, earplugs or other hearing protection, steel-toe boots, and fall protection devices.[31][32] Hazard controls for electrical injury include assuming all power lines are energized until confirmation they are de-energized, and grounding power lines to guard against electrical feedback, and using appropriate personal protective equipment.[31] Proper respiratory protection can protect against hazardous substances. Proper ventilation of an area is an engineering control that can be used to avoid or minimize exposure to hazardous substances. When ventilation is insufficient or dust cannot be avoided, personal protective equipment such as N95 respirators can be used.[31][33]
Long-term risks
Cardiovascular disease
Firefighting has long been associated with poor cardiovascular outcomes. In the United States, the most common cause of on-duty fatalities for firefighters is sudden cardiac death. In addition to personal factors that may predispose an individual to coronary artery disease or other cardiovascular diseases, occupational exposures can significantly increase a firefighter’s risk. Historically, the fire service blamed poor firefighter physical condition for being the primary cause of cardiovascular related deaths. However, over the last 20 years, studies and research has indicated the toxic gasses put fire service personnel at significantly higher risk for cardiovascular related conditions and death. For instance, carbon monoxide, present in nearly all fire environments, and hydrogen cyanide, formed during the combustion of paper, cotton, plastics, and other substances containing carbon and nitrogen. The substances inside of materials change during combustion, and their by-products can interfere with the transport of oxygen in the body. Hypoxia can then lead to heart injury. In addition, chronic exposure to particulate matter in smoke is associated with atherosclerosis. Noise exposures may contribute to hypertension and possibly ischemic heart disease. Other factors associated with firefighting, such as stress, heat stress, and heavy physical exertion, also increase the risk of cardiovascular events.[34]
During fire suppression activities a firefighter can reach peak or near peak heart rates which can act as a trigger for a cardiac event. For example, tachycardia can cause plaque buildup to break loose and lodge itself is a small part of the heart causing myocardial infarction, also known as a heart attack. This along with unhealthy habits and lack of exercise can be very hazardous to firefighter health.[35]